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KEY POINTS

� Children are uniquely vulnerable to a broad suite of environmental contaminants.

� Althoughmetals and air pollutants are the focus of environmental health training in medical
school and residency, endocrine disrupting chemicals have emerged as major drivers of
disease and disability.

� Regulatory measures have and will continue to prove crucial in preventing diseases of
environmental origin in youth.

� Anticipatory guidance in primary care settings should routinely emphasize steps families
can take to limit exposures.
THE INCREASINGLY CHEMICAL WORLD EXPERIENCED BY CHILDREN

The 1993 National Academy of Sciences (NAS) report on Pesticides in the Diets of In-
fants and Children documented the biological basis of children’s unique vulnerability
to environmental hazards. Children have greater dietary intake and inhalation rates per
unit body weight that magnify exposure.2 Dermal barriers are physiologically thinner.3

They also have more years of life in which consequences of exposure can manifest.
The work of the late Sir David Barker emphasized the exquisite sensitivity of develop-
mental programming, producing consequences for organ systems that can be perma-
nent and lifelong.4,5
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Box 1

Selected steps that families can take to limit EDC exposures

� Avoiding microwaving food or beverages in plastic

� Eating organic

� Not cleaning plastics in the dishwasher

� Using alternatives, such as glass or stainless steel, when possible

� Avoiding plastics with recycling codes 3 (phthalates), 6 (styrene), and 7 (bisphenols) via the
recycling code on the bottom of products

� Using cast iron and/or stainless steel pans instead of nonstick cooking materials

� Selecting personal care products using tools such as Environmental Working Groups’
SkinDeep app

� Avoiding cleaning materials without fragrances or undisclosed ingredients

� Recirculating indoor air with outdoor air

� Using a wet mop to remove dust from electronics and furniture
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Lead,6–8 mercury,9–11 tobacco smoke,12 alcohol,13 and polychlorinated biphenyls
(PCBs)14 were among the earliest known hazards identified in children, with conse-
quences for cognitive impairments and other developmental disabilities.15 Air pollutants
were identified to exacerbate and induce asthma in children.16–19 Understandably, res-
idency programs focused training in environmental health on heavy metals and airborne
contaminants.20 The positive benefits of educational initiatives are manifest in the high
self-efficacy pediatricians describe in managing lead exposures and communicating
advice for prevention to families (Trasande L, Ziebold C, Schiff JS, et al. The environ-
ment in pediatric practice in Minnesota: attitudes, beliefs, and practices towards chil-
dren’s environmental health. Minnesota Medicine, submitted. 2008).21–23

However, in the 30 years since the NAS report,1 technologic advances have further
transformed the landscape of environmental exposures and identified that an even
broader array of chemicals can interfere with hormone action. Endocrine-disrupting
chemicals (EDCs) are ubiquitous in the human environment, and include: pharmaceu-
ticals (eg, ethinylestradiol, rosiglitazone); ingredients in cosmetics and personal care
products (eg, phthalates, parabens); pesticides, herbicides and fungicides (eg, chlor-
pyrifos, glyphosate); industrial chemicals (eg, bisphenols, polybrominated diphenyl
ethers, PBDEs); metals (eg, arsenic, cadmium); and synthetic and naturally occurring
hormones (eg, progesterone, testosterone).24 More than 1000 chemicals have been
Box 2

Selected advocacy organizations leading on behalf of children’s environmental health

Children’s Environmental Health Network (cehn.org)

Defend Our Health (defendourhealth.org)

Endocrine Society (endocrine.org)

Environmental Working Group (ewg.org)

Food Packaging Forum (foodpackagingforum.org)

Health Care Without Harm (noharm.org)

International POPs Elimination Network (ipen.org)
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identified as endocrine disruptors, including many common-use chemicals, with the
vast majority of chemicals in commerce still not evaluated for EDC properties.
Health care facilities also use many products that increase the risk of EDC expo-

sures.25 Phthalates, for example, are abundant in polyvinylchloride-based medical de-
vices such as blood bags, nutrition pockets, tubing, umbilical venous catheters or
disposable gloves, where they can account for up to 40% of the final product by
mass.26 They are also used to make coatings for oral medications and in flooring.27

Exposures are likely the greatest per pound body weight in neonatal intensive care
units, where noninvasive respiratory support and feeding tubes have been identified
as the most significant drivers of phthalate exposure.28 In addition, bisphenols are
used in polycarbonate-based medical tubing, hemodialysis equipment, newborn incu-
bators, syringes and nebulizers.29 Parabens are used in medications and intravenous
catheters for their antimicrobial properties.30

The endocrine system is crucial to the functioning of nearly all human biological
functions, with EDCs inducing a broad array of consequences.31 The implications of
EDCs for children’s health have been codified by the World Health Organization and
the United Nations Environment Program,32 Endocrine Society,33,34 American Acad-
emy of Pediatrics (AAP),35 and International Federation of Obstetricians and Gynecol-
ogists (FIGO).36 The Developmental Origins of Health and Disease hypothesis has also
been expanded beyond the effects of nutritional deprivation described by Barker and
colleagues16–19 to recognize the broader range of subtler insults, including environ-
mental exposures, which can also disrupt developmental programming.37 The science
of epigenetics has further unraveled the multigenerational consequences of environ-
mental hazards,38–42 and reinforced the reality that EDCs need not be structurally
similar to hormones to have effects on their function.34

Known Effects of Environmental Hazards on Children’s Health

Beginning in 1997, the NIEHS-EPA Children’s Environmental Health and Disease Pre-
vention Research Centers (Children’s Centers) produced much of the direct evidence
of harm induced by environmental exposures, and particularly EDCs. Multiple birth co-
horts independently documented how organophosphate (OP) pesticide, and polybro-
minated diphenylether (PBDE) exposures resulted in consistent decrements in
cognitive function in relation to prenatal exposure, controlling for multiple other poten-
tial predictors (eg, socioeconomic status and other environmental exposures); these
effects are consistent with those previously observed with lead.43–49 Specifically, pre-
natal exposure to OPs has been associated with magnetic resonance imaging findings
in children including frontal and parietal cortical thinning that are consistent with the
neurobehavioral deficits identified in psychological testing.46

The Children’s Centers identified contributions of polycyclic aromatic hydrocar-
bons, traffic-related air pollution (TRAP), bisphenols and phthalates to obesity and in-
sulin resistance in youth, independent of diet and physical activity.50–54 These findings
changed the paradigm of childhood obesity from a simple imbalance in energy con-
sumption versus expenditure to embrace the built environment and chemicals as
also being obesogenic.50–55 Center investigators also revealed second-hand tobacco
smoke, PBDEs, PAHs, and PCBs as risks for childhood leukemia,56–58 and disruption
of pubertal timing by phthalates and PBDEs.59,60 PCBs and PBDEs were found to
induce immune disruption,61 whereas air pollution and OP exposures in utero were
associated with increased risk for autism spectrum disorder.62,63

Findings from these and other studies worldwide support substantial contribution of
EDCs to disease and disability in children.24 In children born in 2010 alone, PBDE ex-
posures in the United States accounted for 11 million IQ points lost and 43,000 cases
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of intellectual disability, costing $266 billion in health care and other associated costs.
OP pesticide exposures accounted for another 1.8 million IQ points lost and 7500
cases of intellectual disability, costing $42 billion. Of 4-year-old children with obesity,
6.7% were attributed to prenatal bisphenol exposure, with associated costs of $2.4
billion.64 These are an annual cost insofar as exposures continue at current levels.
Importantly, these costs only accounted for the relative health impacts of a few select
EDCs with substantial epidemiologic and mechanistic evidence; studies evaluating
human health impacts from hundreds of other identified EDCs with known human ex-
posures are not established enough to provide this level of evidence to calculate
health costs.

The Importance of Environmental Regulation in Shaping the Health of Children

The importance of public policy in reducing children’s exposure to lead is a crucial and
positive example of the benefits that can be produced by protecting children from envi-
ronmental hazards. Between 1976 and 1980, as the ban on lead from gasoline in the
United States was being instituted, the average child blood lead level was 17.1 mg/dL
among 1- to 5-year-olds. By 1999, the average had declinedw88% to 2.0 mg/dL, further
fueled by bans on lead in paint. Grosse and colleagues estimate that children born in the
1990s had IQ points on average 2.2 to 4.7 IQ points higher than children born in the
1970s. The improvement in lifetime economic productivity due to these policy changes
was estimated to be $110 to 319 billion annually,65 an ongoing economic benefit that
increases to this day as lead levels continue to diminish as lead-based paint hazards
are eradicated. Reductions in criminality and increases in high school graduation rates
have also been related to lower blood lead levels in children.66

Similar health and economic benefits can be traced to the 1990 Clean Air Act
amendments, which strengthened federal government authority to enforce regulations
that limit air pollution.67 Between 1997 to 2008 childhood asthma morbidity declined
substantially.68 Premature births due to fine particulate matter are also likely to have
declined.69 Children from three cohorts of southern California in 2007 to 2011 were
found to have greater growth in their lung function between the ages of 11 and 15
compared with similar aged populations followed between 1994 to 1998 and 1997
to 2001, due to increasingly stringent vehicle emissions limits and subsequent im-
provements in air quality.70

Ongoing Flaws in the Regulatory Framework

In the United States, chemical regulation is administered by the Environmental Protec-
tion Agency (EPA) and the Food and Drug Administration (FDA). The Toxic Substances
Control Act (TSCA) provides the EPA with oversight of most commercial uses of indus-
trial chemicals, except for pesticides. Authority for pesticide regulation is provided to
EPA under the Federal Insecticide, Fungicide and Rodenticide Act and the Federal
Food Drug and Cosmetic Act (FFDCA). FDA has authority to regulate chemicals
used in cosmetics and personal care products, food and food packaging, and phar-
maceuticals under FFDCA.
TSCA does not address EDCs or require testing for endocrine disruption, despite a

revision in 2016.71 This is problematic, as understanding of EDCs continues to accel-
erate rapidly, with only w5% of synthetic chemicals tested for their potential endo-
crine disruption. The US FDA, for example, has now identified more than 1800
chemicals that disrupt at least one of three endocrine pathways (estrogen, androgen,
and thyroid).72

Even if testing data are available, EPA regulatory policies continue to adhere to the
Paracelsian notion that “Solely the dose determines that a thing is not a poison.”
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Although this adage has been fundamental to toxicologic science and in shaping reg-
ulatory policy, EDCs have revealed the flaws in the Paracelsian paradigm. EDCs are
often able to promote effects at concentrations below those traditionally examined
in toxicologic risk assessments.71 They can exhibit non-monotonic dose response
curves, resulting in quantitatively and qualitatively different outcomes at low versus
high concentrations.73 Greater effects have been identified during critical windows
of development, with disruption during these windows altering normal development
and promoting disease.34 There is clearly a need for a shift from a flawed, risk-
based paradigm to one that proactively excludes chemicals with some evidence of
hazardous properties.74

Flaws in FDA policy frameworks also limit the capacity to address EDCs using the
latest endocrine science. For example, the Food Additives Amendment of 1958
exempted food additives from regulation “if such substance is not generally recog-
nized, among experts qualified by scientific training and experience to evaluate its
safety.” The Generally Recognized as Safe (GRAS) exemption has resulted in greater
than 10,000 additives allowable in US food through exemptions and limits on FDA au-
thority.75,76 The Federal Fair Packaging and Labeling Act of 1973 initially required cos-
metics ingredients to be listed on product labels, but concerns over trade secrets led
to the exemption of the term “fragrance,” used to describe a combination of chemicals
including phthalates, solvents, preservatives, UV absorbers, and other chemical con-
stituents known or suspected to be EDCs.77

In the absence of strong FDA and EPA regulatory frameworks, new chemicals have
been introduced as replacements for chemicals of concern without a regulatory
framework that fully evaluates their potential effects on children:

� Chemically similar bisphenols (eg, bisphenol S, or BPS) have replaced BPA;78–83

� Organophosphate esters (OPE) have replaced PBDEs in electronics;84

� Diisononylphthalate (DINP), diisodecylphthalate (DIDP) and 1,2-cyclohexane
dicarboxylic acid diisononyl ester (DINCH) are replacing di-2-ethylhexylphthalate
(DEHP) in food packaging;85

� Neonicotinoids are emerging in use as insecticides, replacing OPs and pyre-
throids86; and

� Short-chain PFAS are increasingly replacing their long-chain analogues.87

Unfortunately, regrettable substitutes have been identified to produce similar effects
as the chemicals they replace in all the above examples. For example, the few studies
that have studied BPA replacements such as BPS have identified similar genotoxicity
and estrogenicity,78–83 embryonal effects,88 oxidative stress,89 cardiotoxicity,90 disrup-
tion of osteoblast function,91 and greater resistance to environmental degradation.92,93

Comparing the costs of EDCs between Europe and the United States also illustrates
the crucial role of regulatory policy in shaping exposures children experience in early
life and their contribution to disease burden. For example, OP-related cognitive loss
($44.7 billion) was vastly lower in the United States compared with Europe ($121
billion).94 This divergence is likely a byproduct of the 1993 Food Quality Protection
Act in the United States (which required lower allowable residues of OPs in foods) in
the absence of similar activity in Europe until recently.95 The converse is true for
PBDEs due to TB-117, a California law that required addition of PBDEs to furniture
from the 1970s until 2013, when the requirement was withdrawn. In contrast, Europe
banned PBDEs from use much earlier, reducing the costs of exposure drastically
compared with the United States.64

Without effective federal regulations governing EDCs, individual states have under-
taken more local efforts to restrict or ban individual chemicals or classes. New York
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has passed a Consumer Chemical Awareness Act that notifies consumers about per-
sonal care products that contain one or more EDCs. New Jersey, New Hampshire, and
Michigan have set regulations on PFAS levels in water that are considerably lower than
federal limits.

Opportunities for Prevention in the Clinical Setting

Intervention studies have promise in reducing EDC exposures. Though large-scale
intervention studies have not yet been conducted, small-scale interventions have sup-
ported the feasibility of reducing EDC exposures (Boxes 1 and 2). Lu and colleagues
reduced OP metabolites in the urine of children to nondetectable levels through an
organic diet intervention.96 Though concerns about the additional costs associated
with organic food are appropriate, a more recent dietary intervention also produced
similar reduction in pesticide metabolites in a low-income, agricultural population.97

A recent intervention study in young girls found that choosing personal care products
that are labeled to be free of phthalates, parabens, triclosan, and benzophenones can
reduce personal exposure to these EDCs by 27% to 44%.98 Another dietary interven-
tion study, which replaced diets in a small sample of families with fresh foods, reduced
urinary levels of phthalate metabolites and bisphenols by 53% to 56%.99

Household interventions can also reduce exposure. A recent study measured dust
from offices, common areas, and classrooms having undergone no intervention (con-
ventional rooms in older buildings meeting strict fire codes), full “healthier” materials
interventions (rooms with “healthier” materials in buildings constructed more recently
or gut-renovated), or partial interventions (other rooms with at least “healthier” foam
furniture but more potential building contamination). Rooms with full “healthier” mate-
rials interventions had 78% lower dust levels of PFAS than rooms with no intervention
(P < 0.01). Rooms with full “healthier” interventions also had 65% lower OPE levels in
dust than rooms with no intervention (P < 0.01) and 45% lower PBDEs than rooms with
only partial interventions (P < 0.1), adjusted for covariates related to insulation, elec-
tronics, and furniture.100

It should be noted that not all studies have achieved expected changes in EDC
levels. One study reported an increase in urinary phthalate metabolites in the interven-
tion group, which was determined to be due to substantial phthalate contamination in
the coriander provided to participants.101 Another more recent study attempted to
create a BPA risk score based on characteristics of food containers and packaging,
and was unable to reduce urinary levels.102

Though further research is particularly needed to generalize the interventions which
have been shown to reduce exposure, the American Academy of Pediatrics (AAP)
Council on Environmental Health has published multiple policy statements on pesti-
cides103 and chemicals intentionally and unintentionally added to foods.35 The AAP
guidance suggests reductions in exposure to pesticides in foods, and identifies steps
including the consumption of organic produce, recognizing the nutritional, environ-
mental, health and cost issues involved. It documents the variability of pesticide res-
idues, as they are highest in leafy fruits and vegetables, and refers to various guides
provided by Consumer Reports (Stop Eating Pesticides) and Environmental Working
Group (Dirty Dozen and Clean Fifteen lists). Rinsing fruits can reduce residues but
has not been proven to reduce exposure.104

The Importance of the Pediatrician Voice in Environmental Advocacy

The medical professional community has called their members to action to protect
their patients from EDC exposure, including (but not limited to) the American Academy
of Pediatrics,35 Endocrine Society,33,34 and International Federation of Obstetricians
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and Gynecologists.36 This section describes patient- and government-level advocacy
opportunities for pediatricians steeped in the latest scientific evidence.
The AAP Policy Statement on Pesticides recommends improved labeling on pesti-

cide containers including inert ingredients and risks posed specifically to children. It
also supports improved reporting requirements for poisonings, and the support of
least toxic alternatives, including the use of integrated pest management in house-
holds and agricultural settings, both in the United States and abroad. The Policy State-
ment also endorses the notion that communities and its members have the right to
know where pesticides are applied, so that modifications can be made to reduce ex-
posures in vulnerable groups.105

The AAP Policy Statement on Food Additive Chemicals identifies multiple improve-
ments needed in FFDCA reform, including:

� Revising the GRAS process permit independent scientific review, followed by
FDA review of such evaluations, before approval;

� Eliminating conflicts of interest in toxicologic evaluations of food additives;
� Requiring FDA to consider vulnerable subpopulations and systems in evaluating
food additive safety, and applying additional safety factors to account for this
vulnerability;

� Considering cumulative exposure from all dietary sources, as well as other addi-
tives and contaminants that interact with the same biological pathways; and

� Expanded FDA authority to revisit safety of chemicals when concerns are raised.

The Endocrine Society has also called for a shift from a flawed, risk-based paradigm
to one that proactively excludes chemicals with some evidence of hazardous proper-
ties until further detailed reassuring testing data become available.74 This call is based
upon growing evidence that EDCs can exhibit nonlinear and non-monotonic dose
response curves, resulting in quantitatively and qualitatively different outcomes at
low versus high concentrations.73 This phenomenon means that effects of low-level
exposures in humans cannot be extrapolated from high-dose experiments in animals,
leaving to a false interpretation of safety.34

Health care facilities have also begun to support sustainability initiatives that reduce
the use of plastic, particularly those with chemical hazards. Practice Greenhealth, a
network of over 1,400 hospitals in the United States, has implemented sustainability
initiatives and climate-smart strategies in their facilities. The network also includes in-
dustry partners (manufacturers, suppliers, service providers, and other supply chain
partners). Health Care without Harm supports hospital partners in recommending
safer medical products and other materials that health care organizations and hospi-
tals should adopt.
ADVOCATING FOR MEDICAL EDUCATIONAL CHANGE

Rapidly accelerating awareness about the threat of climate change, especially among
medical students and residents, has brought to the fore the need for enhanced envi-
ronmental health education in the medical curriculum. Given that many EDCs derive
from fossil fuels, there are potential co-benefits to reductions in their production.
Increasing awareness of these exposures among the public also raises the need for
educational efforts that span the population of child health care providers from pedi-
atric interns to senior practitioners.
The surveys of state chapter membership of the AAP in Michigan,106 Minnesota,

(Trasande L, Ziebold C, Schiff JS, et al. The environment in pediatric practice in Min-
nesota: attitudes, beliefs, and practices towards children’s environmental health.
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Minnesota Medicine, submitted. 2008.)Wisconsin23 and New York,21 which revealed
strong self-efficacy in managing lead exposure, also identified a lack of self-efficacy
in managing patients with pesticide and other EDC exposures (and supporting antic-
ipatory guidance around prevention). These findings were also confirmed among ob-
stetricians and gynecologists.107 Gaps in provider self-efficacy related to managing
EDCs should not be surprising given the limited amount of environmental health edu-
cation in medical training.108 A survey of pediatric residencies in 2003 revealed a
modest (typically 1–6 hour) focus on environmental hazards across 3-year programs.
Clearly, there is a need for updating medical school curricula.
To address gaps in active practitioners, the Endocrine Society has organized a se-

ries of educational videos for health care providers, now posted on YouTube and the
Endocrine Society website (www.endocrine.org). The International Federation of Gy-
necologists and Obstetricians has also developed a series of patient-facing materials
to guide families about safe and simple steps to reduce exposure. The Council on
Environmental Health of the AAP has produced patient- and provider-facing educa-
tional materials linked to the pesticide and food additive statements. Each of these ini-
tiatives represents an important advance in our ability to protect children.
Pediatricians have long served as outstanding advocates, from childhood vaccines

to injury prevention. Although EDCs and other environmental exposures compete for
attention with other aspects of anticipatory guidance, as well as treatment for acute
conditions, their increasing contribution to chronic diseases that increasingly affect
youth cannot be neglected. The best treatment will ultimately come from primary pre-
vention of toxic exposures, through the combination of individual- and population-
level advocacy. The voice of the pediatrician remains extremely well-respected in
both of these circles, and given the known contribution of these exposures to disease
and disability across the lifespan, we all stand to benefit when pediatricians show true
leadership on behalf of the most vulnerable.
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