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A B S T R A C T   

There is increasing evidence of a role for environmental contaminants in disrupting metabolic health in both 
humans and animals. Despite a growing need for well-understood models for evaluating adipogenic and potential 
obesogenic contaminants, there has been a reliance on decades-old in vitro models that have not been appro
priately managed by cell line providers. There has been a quick rise in available in vitro models in the last ten 
years, including commercial availability of human mesenchymal stem cell and preadipocyte models; these 
models require more comprehensive validation but demonstrate real promise in improved translation to human 
metabolic health. There is also progress in developing three-dimensional and co-culture techniques that allow for 
the interrogation of a more physiologically relevant state. While diverse rodent models exist for evaluating 
putative obesogenic and/or adipogenic chemicals in a physiologically relevant context, increasing capabilities 
have been identified for alternative model organisms such as Drosophila, C. elegans, zebrafish, and medaka in 
metabolic health testing. These models have several appreciable advantages, including most notably their size, 
rapid development, large brood sizes, and ease of high-resolution lipid accumulation imaging throughout the 
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organisms. They are anticipated to expand the capabilities of metabolic health research, particularly when 
coupled with emerging obesogen evaluation techniques as described herein.   

1. Introduction 

Over the last several decades, the global prevalence of metabolic 
disorders, specifically obesity, has risen at an alarming rate. Despite 
extensive investments in exploring interventions to address this health 
trend, the incidence rates continue to rise. In the United States (US), 
8.9% of infants and toddlers [1,2], 18.5% of 2–19 year old’s [1,2], and 
42.4% of adults (20 + ) [3] are currently classified as obese, with an 
additional 31.2% of the adult population classified as overweight [4]. 
Obesity consumes >$200 billion of the US health care expenditure 
annually and also drives increased risks of various comorbidities (e.g., 
type II diabetes, cardiovascular disease, hypertension) [5-8]. High so
cietal costs [8,9] have driven support for research into causal factors, 
including exposure(s) to environmental contaminants. Previous 
research estimated extremely high economic costs of obesity, diabetes, 
and associated health costs reasonably attributable to environmental 
contaminants in the European Union [9], even when only considering 
five chemicals for which sufficient epidemiological data were available. 

As detailed in the companion review, Obesity II, “obesogens” are 
environmental chemicals that increase the size of white adipose tissue 
(WAT) stores in the body as a result of exposure in vivo [10,11]. 
Chemicals that can induce adipogenesis in cellular models in vitro but 
have not yet been shown to increase WAT stores in vivo are designated as 
adipogens or potential obesogens [12]. Considering the complexity of 
human chemical exposures, the increasing reports of obesogens, and the 
rising incidence of metabolic disorders, it is critical to identify and 
validate comprehensive models (in silico, in vitro, and in vivo) for the 
identification and evaluation of obesogens. One of the major challenges 
in the obesity field is to develop a robust set of tests that can reveal 
adipogenic and/or obesogenic properties of chemicals and have strong 
predictive capacity in humans. These tests should be in line with the 3R 
principles (i.e., reducing the number of animals, refining experiments to 
minimize the number of animals used, and replacing animal experi
ments where possible). Practically speaking, the high costs of animal 
experiments limit the use of mammals in screening for potential obes
ogens. This supports an urgent need for increased use of lower-order (in 
silico, in vitro) testing to prioritize higher-order (in vivo) testing. There is 
also an urgent need for new in vivo models that are less time and cost- 
intensive to support in vivo testing that is still required for the tens of 
thousands of chemicals used in commerce. While the number and di
versity of cellular models of adipocyte differentiation and metabolic 
health is increasing, these require comprehensive validation to deter
mine the strengths and weaknesses of each for their relevance to human 
metabolic health. 

Despite the potential limitations of available animal models to 
reproduce human disease fully, they help evaluate exposure pathways, 
generation of in vivo metabolites, tissue and/or disease biology, and 
support evaluations of underlying molecular mechanisms involved in 
adverse health outcomes. The choice of the animal model should 
consider the degree to which the outcomes being examined are relevant 
to humans and the sensitivity of these outcomes to environmental 
chemicals. The relevance of the model to human health depends on the 
evolutionary conservation of biological processes impacted by candidate 
chemical or pharmacological molecules between humans and the animal 
model used. It is likely that a single test might not reveal all relevant 
properties and that a battery of tests should be developed. This set of 
tests should address the following issues: 1) evaluate in vivo obesity 
according to its different characteristics, including the type and impor
tance of different adipose depots; 2) reveal in vitro and in silico assays/ 
models that reliably predict obesity; 3) identify in vivo biomarkers that 
are predictive of obesity, and 4) account for delays between exposure(s) 

to putative obesogens and the appearance of a phenotype. 
Mammalian models have been relied on for metabolic health testing 

due to clear translation of adipose physiology. However, non- 
mammalian model species are increasingly appropriate for the 
screening and rapid identification of chemicals and mixtures and the 
exploration of disease mechanisms. Knowledge acquired from non- 
mammalian model systems (e.g., vertebrates such as teleost fish and 
invertebrates such as flies and worms) can provide insights into mech
anisms involved in regulating lipid metabolism and transport processes 
that have been intractable by other approaches [13]. Due to the con
servation of lipid metabolism processes among vertebrates, the zebrafish 
model has become an attractive alternative to rodents, with lower costs 
and time investments. 

2. In vitro assays 

The most well-established lower-order testing protocols are the 
adipogenesis cell assays, although newly developed cell models have 
allowed an increasing breadth of metabolic disruption assessment 
(Fig. 1). Several in vitro models were developed in various species (pri
marily human and murine) to identify potential obesogens [14,15]. 
These models generally assess three endpoints: commitment to the 
adipocyte lineage (via multipotent MSC models), preadipocyte prolif
eration (proliferation of early-stage adipocyte lineage cells), and dif
ferentiation into mature adipocytes (adipogenesis; generally determined 
via quantification of intracellular triglyceride accumulation). 

2.1. Preadipocyte models 

Preadipocytes are already committed to the adipocyte lineage and 
thus can be used to examine both proliferation (via nuclear staining) and 
adipogenesis (via triglyceride quantification). These cells are in an early 
stage of adipocyte development and require activation of signaling 
pathways to promote further development/maturation. Adipogenesis 
can be achieved by treating cells with a “differentiation cocktail” that 
contains a variety of hormonal and/or growth factors to initiate the 
process. These factors are often different between laboratories, but 
generally always include a mixture of fetal bovine serum, insulin, and 
isobutylmethylxanthine (IBMX); some laboratories also include thyroid 
hormone and/or glucocorticoids, though the presence of these and 
concentrations varies widely. Once the cocktail is removed, the relative 
roles of various test chemicals in differentiation (assessed via triglycer
ide accumulation) and proliferation (of adipocyte precursor cells) can be 
assessed [16-19]. 

The 3T3-L1 mouse cell line was isolated and described in the 1970 s 
and has been utilized for decades as an in vitro screen to examine the 
mechanisms regulating adipogenesis and evaluate potential adipogenic 
chemicals [16,17,20]. This cell line has been used to carefully explore 
mechanisms promoting and underlying various stages of adipogenesis 
[21,22] and has been shown to appropriately select chemicals for 
further testing (linking in vitro results to in vivo health outcomes; e.g., 
bisphenol A and tributyltin) [23-31]. While this line has been well- 
characterized [21], its sourcing can be unreliable [32,33]. For 
example, nuclear receptor expression related to adipogenesis is mark
edly different between lots and sources of this cell line [32]. These and 
other cell line integrity issues can contribute to discrepancies in repli
cation efforts between laboratories [34,35]. We recently undertook an 
interlaboratory reproducibility effort of 3T3-L1 responses to a positive 
control chemical (rosiglitazone) and three blinded test chemicals [35]. 
While the determination of “active” versus “inactive” were consistent 
across the ten participating laboratories, the potencies and efficacies of 
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the blinded chemical responses varied by orders of magnitude. The 
cross-over study design allowed for determinations of the sources of 
variation, and our results demonstrated that inconsistencies of the cell 
line sources and differentiation protocol differences promoted most of 
the variation. Thus, the harmonization of protocols across laboratories 
may help support consistent reporting of adipogenic results [35]. 
Despite these limitations, 3T3-L1 cells remain the most popular model 
for assessing adipogenic outcomes. Specifically, numerous publications 
have assessed bisphenols [26,32,36], brominated and organophosphate 
flame retardants [37-39], per and polyfluoroalkyl substances [40,41], 
and diverse other environmental contaminants [20,24,37] and mixtures 
[42] using this cell model. There is an emerging interest in de
terminations of whether environmental contaminant exposures promote 
the development of normal or abnormal adipocytes, and some pre
liminary data has begun to evaluate this. For example, BPA enhanced 
levels of leptin, interleukin-6, and interferon gamma in mature adipo
cytes, resulting in hypertrophic adipocytes with impared insulin 
signaling, increased pro-inflammatory cytokine production, and 
reduced glucose utilization [43]. 

The OP9 mouse bone marrow-derived stromal cell line is another 
established preadipocyte model [19,44] that allows faster differentia
tion (2–3 versus 10–14 days). This cell line is considered to be a later 
stage preadipocyte than 3T3-L1 cells because it expresses key adipo
genic factors such as CCAAT/enhancer-binding proteins alpha and beta, 
peroxisome proliferator-activated receptor gamma (PPARγ), sterol- 
regulatory element-binding protein-1 (SREBP-1), perilipin, and other 
adipocyte markers that are not expressed in basal 3T3-L1 cells before 
adipogenic induction [19]. Therefore, OP9 cells can be induced to 
accumulate triglycerides within two days, differentiation is not dimin
ished by maintenance in culture at high cell density, their adipogenic 
potential is maintained for > 100 passages, and they do not require 
contact inhibition and reversion to clonal expansion before initiating the 
differentiation induction [19]. These characteristics suggest a promising 
model with lower time and cost investments, though this does require 
careful validation to understand the translation of responses to human 
health effects. We have reported that these cells do differentially express 
nuclear receptors relative to 3T3-L1 cells, including PPARγ/α, liver X 
receptor alpha (LXRα), glucocorticoid receptor (GR), retinoid X recep
tor-alpha/beta (RXRα/β), and estrogen receptor alpha (ERα) [32]. As a 
result, responsiveness to adipogenic chemicals in OP9 cells is signifi
cantly different from 3T3-L1 cells, characterized by lower responsive
ness via activation of GR and greater responsiveness via the RXR 
pathway [32,45]. While still an uncommon model for assessing obes
ogens, OP9 cells have been used to evaluate bisphenols [32], pesticides 
[45], and other environmental contaminants [45]. 

More recently, several human preadipocyte models have become 

available that hold promise for future evaluations of adipogenicity by 
environmental contaminants. Since the basis for much of our under
standing of adipogenesis has been evaluated using the murine 3T3-L1 
cells, utilizing these newer human models may help elucidate any 
species-specific differences that may be present. Many companies now 
supply primary human preadipocytes (HPAd) isolated from several 
human subcutaneous depots, visceral depots, and/or adipose sur
rounding the heart. Moreover, suppliers also provide source-specific 
HPAd cells, i.e., those sourced from donors with normal, overweight, 
or obese body mass indices and those with or without diabetes (e.g., see, 
https://www.zen-bio.com/products/cells/subcutaneous_adipocytes.ph 
p). These discrete preadipocyte populations allow more targeted ques
tions and potentially a better molecular understanding of adipogenesis. 
However, human preadipocyte cell models are cryopreserved at the end 
of primary culture. They can generally be propagated at most two 
additional passages before losing their ability to differentiate into 
mature adipocytes [46,47]. As such, these models, while potentially 
more translationally relevant to human health, are extremely costly, as 
numerous cryopreserved vials are needed to complete any well-designed 
experiment (e.g., multiple biological replicates). Limitations aside, re
searchers have begun to utilize human preadipocytes to assess adipo
genic and anti-adipogenic effects of botanical and biological mixtures 
[48-50], bisphenols [51], and flame retardants [38]. 

The Simpson-Golabi-Behmel syndrome (SGBS) cell line addresses 
some of these limitations of using primary human preadipocytes. These 
cells were isolated from an infant with an extremely rare (250 reported 
cases) metabolic health condition characterized by excess growth; this 
infant demonstrated expanded subcutaneous fat depots, and a sample of 
this tissue was obtained postmortem [52]. Profiling these cells suggests 
that they can be maintained and retain robust differentiation capability 
over 50 passages [53], a significant advantage over normal human 
donor preadipocytes, and profiling has suggested morphological, 
biochemical, and functional similarities to differentiated adipocytes 
from healthy subjects [52,54]. These cells also transiently express brown 
adipocyte markers [55-57], suggesting that this cell line might be useful 
for assessments of adipocyte browning. Proteomic and transcriptomic 
analyses of SGBS cells have been used to evaluate the molecular un
derpinnings of SGBS differentiation, with > 1100 proteins and > 300 
genes differentially expressed in differentiated cells relative to undif
ferentiated [58]. However, some research comparing this model to 
existing models has suggested notable differences. Metabolomics and 
lipidomics profiling revealed a diverse grouping of lipid classes mark
edly changed throughout the differentiation process, suggesting a radi
cally different metabolite profile than previously observed in 3T3-L1 
cells [59]. SGBS cells have been used to evaluate the adipogenic effects 
of various bisphenols [60], though have not yet seen frequent use in this 

Fig. 1. In vitro models used for testing the effect of metabolic disrupting chemicals on various pathways. Common uses of the various cell models are described.  
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context. Other human cell lines obtained from tumors or transformed 
can be differentiated into either white (Lisa, LS-14, AML-1, Chub-S7) or 
brown (PAZ6) adipocytes [61], but their use in toxicology is rare [60]. 

2.2. Mesenchymal stem cells (MSCs) 

Another option in assessing adipogenesis is the utilization of 
mesenchymal stem cells (MSCs). MSCs are multipotent cells that can be 
used to assess adipocyte lineage commitment in addition to adipocyte 
differentiation [18,62,63]. MSCs are isolated from either bone marrow 
or adipose tissue, and cells from both sources have been used to assess 
adipogenesis. The use of MSC models has been reviewed previously in 
the context of obesogens and their potential impacts on cell commitment 
and subsequent differentiation [64]. Recent work described a novel 
protocol for separately evaluating adipogenic commitment and subse
quent differentiation in primary MSCs [63], previously described for the 
C3H10T1/2 murine stem cell model [65,66]. This protocol allows a 
complete characterization of potential obesogens and their role in dis
rupting cell commitment and differentiation. While the focus has been 
on evaluating effects on the adipocyte lineage, a growing body of 
research has begun to evaluate potential chemical impacts on osteogenic 
development using these models [67-70]. Some limited research has 
evaluated chemical impacts on development down the chondrogenic, 
myogenic, or other cell lineages [64]. Human MSCs are readily available 
from diverse vendors, although murine models are also routinely used 
[45,70-72]. 

Recent research elegantly described protocols for distinguishing as
says to evaluate adipogenic lineage commitment and subsequent 
adipocyte differentiation [63]; briefly, cells can be pre-treated with test 
chemicals prior to the differentiation cocktail exposure. These pre- 
treated cells can be subsequently exposed to the differentiation cock
tail and evaluated at the end of the differentiation window. The extent of 
triglyceride accumulation can be compared with standard adipogenesis 
plates; chemicals with effects on commitment should have equivalent 
effects to those differentiated for the full two weeks, whereas cells 
without effects on commitment should not accumulate more tri
glycerides than the vehicle control in the commitment assays, regardless 
of effects in the standard adipogenesis assay [63]. 

Human MSCs lack the issues inherent in primary human pre
adipocyte models; they can be maintained in culture for longer, have less 
variability in sourcing, and are easier to isolate and culture, increasing 
the utility of this model. This should lead to an increased reliance on 
human MSCs for adipogenic testing. However, rigorous reproducibility 
assessments and comprehensive validation testing are still needed to 
ensure accurate translation to and/or prediction of in vivo and human 
health outcomes. Diverse bisphenols [72-74] and their mixtures [75], 
flame retardants [18], parabens [76], and other environmental con
taminants [63,77-79] have been evaluated using MSC models. Research 
in female MSCs demonstrated that RXR agonists attenuated glucose 
uptake; blunted adiponectin expression; promoted a sustained inter
feron signaling, inhibiting markers of adipocyte browning; and unlike 
activation of PPARγ, failed to downregulate proinflammatory and pro
fibrotic transcripts [77]. As the authors described, these data implicated 
RXR agonists in the development of dysfunctional white adipose tissue 
that could potentially exacerbate obesity and/or diabetes risk in vivo. 
Future research is needed to evaluate these functional differences in 
adipocyte physiology to determine more subtle effects of obesogenic 
contaminants. There has also been some initial research to evaluate the 
interplay between lineage commitment, suggesting that exposures to 
certain chemicals can not only commit cells to the adipocyte lineage but 
can also suppress the osteogenic lineage [45]; this interplay between 
different cell lineages is an area of research that still requires further 
investigation and mechanistic assessment. 

Human multipotent adipose-derived stem cells (hMADS), obtained 
from human infant adipose tissue, have also been used to study the ef
fects of aryl hydrocarbon receptor ligands that demonstrated an 

inflammatory response in pre-and adipocytes, a phenomenon observed 
in obesity [80]. hMADS were also used to screen 49 contaminants 
prioritized through ToxCast screening, reporting 26 active chemicals 
across diverse chemical groups (i.e., pesticides, phenolics, phthalates, 
etc.) [81]. 

2.3. Spheroid adipocyte models 

Spheroid cell cultures of both MSCs and preadipocytes are being 
developed and evaluated [82-87]. These culture techniques may allow 
some inherent benefits over the traditional adherent monolayer cul
tures. Spheroid culture of adipocyte models may improve differentiation 
efficiency relative to monolayer cultures [82-86,88], reducing time and 
cost investment. The fundamental goal of spheroid models is to maintain 
greater in vivo or whole tissue-relevant signaling than monolayer 
models. Indeed, several papers have demonstrated greater adipogenic 
and osteogenic gene expression relative to monolayer cultures and a 
down-regulation of stemness markers [82,83]. Other researchers have 
demonstrated increased plasticity of spheroid constructs through mul
tiple generations of these cells able to commit to and differentiate into 
numerous cell lineages [89]. This plasticity might signal a greater 
variance in these models that requires further investigation. While these 
models have received no apparent use for the interrogation of putative 
obesogens, they have been demonstrated to exhibit improved relevance 
to the in vivo condition [90]. Specifically, researchers have demon
strated that human unilocular vascularized adipocyte spheroids have 
unilocular morphology and large lipid droplets, and these cells develop 
key features of adipocyte dysfunction (e.g., insulin resistance, impaired 
lipolysis, and disrupted adipokine secretion; [90,91]) and respond to 
stress (toxin or culture-related) by secreting pro-inflammatory adipo
kines [92]. These spheroid cultures also maintain expression of markers 
specific to certain adipocyte types (e.g., brown) for longer than is 
possible in 2D culture [92]. These 3D cultures also exhibit more physi
ologically relevant gene expression (>4500 differentially expressed 
genes relative to 2D culture) and lipid profiles of > 1000 lipid species 
resemble the in vivo condition [93]. As such, these models may allow for 
a clearer understanding of adipose physiology than was possible with 
monolayer cultures and hence requires further evaluation and compre
hensive validation and testing; this should also include evaluation of 
known adipogenic and/or obesogenic contaminants to compare re
sponses with existing models. 

2.4. Liver cell assays 

Obesogens are also known to target liver (either directly or indi
rectly) and promote metabolic diseases such as toxicant-associated fatty 
liver diseases (TAFLD) or non-alcoholic fatty liver disease (NAFLD); 
thus, there is a need to have accurate in vitro hepatocyte models for 
testing chemicals. Liver cell assays are frequently used as surrogate 
models to predict in vivo hepatotoxicity related to chemicals and deci
pher the determinants of NAFLD development and progression. The use 
of various hepatocyte models for evaluating NAFLD and other metabolic 
disorders has been covered recently in detail [94-97]. These models 
have been used to evaluate diverse environmental contaminants, 
including bisphenols [98,99], phthalates [99-101], pesticides [102], 
other environmental contaminants [99,101], and therapeutics [103] for 
effects on NAFLD and other metabolic dysfunction. 

Among many liver cell lines, HepG2 cells are a human hepatoma cell 
line commonly used for drug metabolism and hepatotoxicity studies. 
HepG2 cells express certain differentiated hepatic functions like lipo
protein metabolism, triglyceride metabolism, bile acid synthesis, 
glycogen synthesis, or insulin signaling, making them a useful tool for 
some studies targeting hepatotoxicity and drug metabolism [104]. 
HepG2 cells exposed to a low concentration of BPA alter lipid meta
bolism, mitochondrial function and promote lipid accumulation leading 
later one to steatosis [105]. Co-incubation of HepG2 with fatty acids (e. 
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g., palmitic acid and oleic acid) induced lipid accumulation in a dose- 
dependent manner, which will contribute to steatosis [106]. 

Comparatively, human THLE-2 and murine AML12 cell lines are 
derived from healthy liver cells and express characteristics of normal 
adult liver epithelial cells [107]. Insulin receptor expression was low in 
THLE-2 cells relative to AML12 and HepG2 cells, suggesting disparities 
in their application to insulin receptor signaling. Gluconeogenesis and 
hepatokine expression was impaired in both THLE-2 and AML12 cells; 
while expression of Angiopoietin Like 4 (ANGPTL4) was regulated by 
PPARδ activation similarly across THLE-2, AML12, and HepG2 cells, 
only HepG2 cells reflected the in vivo environment with regulation by 
cAMP [107]. These models have been utilized to evaluate fatty acid 
induced lipid droplet accumulation and the presence and causes of 
heterogeneity in lipid droplet content [108], 

Perhaps the most widely used human liver cell line is HepaRG. 
HepaRG cells can differentiate into hepatocyte-like and biliary-like 
phenotypes after dimethylsulfoxide (DMSO) (1.75–2%) exposure, and 
possess the ability to stably express several liver-specific genes such as 
albumin, aldolase B, CYP2E1 and CYP3A4 [109]. Changes in metabo
lites related to energy metabolism, oxidative stress, and insulin resis
tance have also been observed in differentiated HepaRG cells 
supplemented with an oleate/palmitate mixture [110]. These are 
consistent with alterations observed in the liver tissues of human pa
tients and animal models of NAFLD [111,112]. Altogether, these data 
further support the suitability of the fatty acid-supplemented HepaRG 
model to study the impact of obesogens on steatosis progression towards 
steatohepatitis in the context of the “two-hit” model [113]. In line with 
these data, an oleate/stearate mixture is sufficient to decrease the 
expression of CYP1A1, 1A2, 1B1 and decrease their activity after stea
tosis induction [114]. These results corroborate data obtained from 
NAFLD rodent models, especially regarding CYP1A1 and 1A2 [115- 
117]. 

In addition, several 3D liver culture models have also been developed 
to create a cell environment closer to in vivo conditions. In 3D cell cul
tures, cell growth and interaction with surrounding conditions exhibit 
higher differentiation and benefit from more extended culture than 2D 
cultures [118]. When cultured as 3D spheroids, HepaRG cells express 
genes involved in lipoprotein metabolism, energetic lipid synthesis, 
gluconeogenesis, glycolysis, and bile acid metabolism, liver-specific 
functions, and xenobiotic metabolism enzymes [119,120]. 

Primary human hepatocytes (PHH) are increasingly used to predict 
drug metabolism and liver enzyme induction in humans. However, PHH 
have inherent limitations: scarce and unpredictable availability, limited 
growth activity and lifespan, and early and variable phenotypic alter
ations in 2D culture. Moreover, liver-specific functions, particularly 
cytochrome P450 (CYP) activities and their responsiveness to proto
typical inducers, are not maintained with increasing time of culture. 
Liver-specific functions also usually decrease with time in culture and 
are differently altered [121,122]. Cultivated in a 3D collagen matrix, 
they proliferate, form hollow spheroids, and undergo robust hepatic 
differentiation. They can be maintained in this state for at least 28 days 
without decreasing survival rate and cellular polarity and require fewer 
cells to generate spheroids than 2D cultures [123]. PHH 3D-spheroid 
models co-cultured with liver sinusoidal endothelial cells, Kupffer 
cells, and hepatic stellate cells increase human hepatocyte functionality 
(increased mRNA expression of APOB, CYP3A4, and albumin). Essential 
factors such as spheroid size, time in culture, and culture media 
composition affect basal levels of xenobiotic metabolism and liver 
enzyme inducibility via activators of hepatic receptors such as the aryl 
hydrocarbon receptor (AhR), constitutive androstane receptor (CAR), 
and pregnane X receptor (PXR) [124]. Various co-culture techniques 
have also been developed for liver cell assays to recreate more tissue or 
disease-relevant environments for the evaluation of disease biology and 
toxicology [125]. 

Similarly, primary murine hepatocytes (PMHs) are readily isolated 
through rapid protocols and thus have improved availability relative to 

PHH [126]. PMHs have been well-described as a model to assess fat 
deposition, inflammatory responses, and mechanistic interrogation of 
fatty acid induced lipid accumulation by diverse contaminants [127- 
129]. 

2.5. Muscle cell assays 

While skeletal muscle is the main tissue responsible for utilization of 
glucose and is the main site of the development of insulin resistance, the 
impact of toxicants on skeletal muscle has not been extensively studied. 
Detecting effects in vitro can be difficult due to the specific cell culture 
requirements and stimulation of skeletal muscle fibers required to mimic 
physiological function. Since skeletal muscle plays a critical role in 
developing metabolic diseases, any chronic disturbances in muscle cells 
may contribute to insulin resistance and subsequent obesity. 

The most widely used in vitro myocyte model is the murine myoblast 
cell line, C2C12. These cells can be differentiated into myotubes 
(immature muscle cells) over several days. BPA and estradiol have been 
demonstrated to suppress myogenic differentiation by inhibiting Akt 
signaling in C2C12 cells [130], potentially disrupting ER signaling. 
Tolylfluanid alters insulin signaling, mitochondrial function, and pro
tein synthesis in C2C12 cells in a manner dependent on fatty acid levels 
[131]. The rat myoblast cell line, L6, has a longer differentiation time 
relative to C2C12 cells, as well as appreciable differences in mitochon
drial respiration and glucose utilization [132]. In L6 rat myotubes, di(2- 
ethylhexyl) phthalate (DEHP) exposure was shown to affect insulin re
ceptor expression, GLUT4 expression, as well as glucose uptake and 
oxidation, indicating that it may negatively influence insulin signaling 
[133]. The pesticides dichlorodiphenyltrichloroethane (DDT) and 
lindane impair insulin signaling in L6 myotubes, promoting insulin 
resistance-like conditions [134]. 

Human and rodent primary myoblasts are also used. However, they 
are unsuitable for extended cultures and more extensive screening 
studies due to relatively low numbers of cells obtained at a relatively 
high cost. Some polychlorinated biphenyls (PCBs) have been shown to 
inhibit myogenic differentiation of primary murine myoblasts and L6 
cells [135]. In primary murine myoblasts differentiated to myotubes, 
low micromolar concentrations of BPA and tetrabromobisphenol A 
(TBBPA) were shown to affect calcium signaling and resting potential. In 
a similar study, using rabbit skeletal muscle microsomes, BPA and 
TBBPA were shown to differently affect the function of proteins involved 
in calcium signaling [136]. 

Notably, there are distinct differences between mature muscle tissue 
and myotubes derived from myoblast cell lines or primary myoblasts 
[132]. Myotubes have lower energy demand, lower oxidative phos
phorylation, higher glycolysis, and lower insulin responsiveness [137]. 
There is a considerable knowledge gap regarding the effects of envi
ronmental chemicals in more complex and physiologically relevant 
skeletal muscle systems, which require additional validations. 

3. In vivo assays 

While in vitro mechanistic studies are a critical component in envi
ronmental chemical research, these studies cannot replace the need for 
in vivo integrative models, particularly for adverse health outcomes that 
develop later in life following developmental exposures. Research 
examining the environmental health consequences of exposure to 
environmental chemicals using animal models has demonstrated that 
some adverse health effects of chemical exposures reported in humans 
are also apparent across other vertebrates [138]. These findings are 
essential for understanding the impact of environmental chemicals, 
including obesogens, across all vertebrates [139]. These tests are critical 
because the classification of obesogens into different classes according 
to the strength of evidence is highly dependent on the tests used. 

Beyond the classical rodent in vivo models used to investigate human 
obesity, new models have emerged based on alternative model 
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organisms, e.g., bony fishes, worms, and flies [140] (Fig. 2). These 
model organisms, including Danio rerio (zebrafish), Oryzias latipes 
(medaka), Caenorhabditis elegans (C. elegans; roundworm), and 
Drosophila melanogaster (fruit flies), offer several advantages to accurate 
discernment of the metabolic processes involved in metabolic diseases 
such as obesity [141]. These organisms share small size, large numbers 
of progeny, relatively rapid development, and sequenced genomes. They 
are well-suited to moderate throughput screening of chemicals to study 
metabolic diseases [142-146]. Moreover, most genes and gene families 
implicated in metabolic diseases are conserved among flies, worms, 
zebrafish and humans [144]. Below we present a short overview of the 
utility of each model and some summarized obesogenic chemical eval
uation using these emerging models (Table 1). 

3.1. Danio rerio (Zebrafish) 

Zebrafish, a small tropical freshwater fish native to South Asia (e.g., 
India and Bangladesh), has found wide use in almost all areas of bio
logical research [147,148]. Zebrafish is one of the most widely used 
models to study metabolic dysfunction. They have all the critical organs 
that regulate energy homeostasis and metabolism, including adipose 
tissue, digestive organs *(i.e., pancreas and liver), and skeletal muscle, 
and all are physiologically and anatomically similar to humans 
[141,149,150]. The rapid development of zebrafish promotes metabol
ically functional organs only a few days post-fertilization (dpf; e.g., 
pancreas and liver develop around three dpf). Organogenesis and bio
logical processes can be easily monitored due to the extra-uterine 
development and the semitransparency of the embryo and larva stages 
that persist until a relatively late stage of development [151]. 

Zebrafish store excess neutral triglycerides in lipid droplets within 
white adipocytes similar to mammals [152] and have well-described 
anatomically, physiologically, and molecularly distinct adipose depots 
throughout their bodies [153-155]. This contrasts with Drosophila and 
C. elegans, where fat is stored in non-specialized cells (within the fat 
body or within the intestine, respectively) that carry out several other 
functions besides lipid storage [156]. Regulations of body weight, 
appetite, lipid, and sugar homeostasis share similar mechanisms be
tween humans and zebrafish and are similarly affected by endocrine 
disrupting chemicals (EDCs) [145,157,158]. The development of WAT 
starts in the pancreatic and abdominal adipose depots, then in various 
cranial and ocular depots, and finally expands throughout the fish. The 
appearance correlates with the size rather than the age of the fish 

[154,159,160]. The first adipocytes develop from 8 to 12 dpf or at a 
minimal larval size of approximately 5 mm [159]. 

Zebrafish obesity models enable the evaluation of diet, chemical or 
genetic, phenotypic modifiers through several different techniques [161- 
164]. Measurement of total body triglycerides may be used as an indicator 
for evaluating adiposity and/or obesity progression [160]. Adipocytes can 
also be visualized and quantified by lipid staining with the Oil Red O 
neutral dye or with various fluorescent lipophilic dyes (e.g., Nile Red, Lipid 
Green) in live fish, adult zebrafish sections, or fixed zebrafish larvae. Since 
zebrafish larvae are semi-transparent, live-imaging and fluorescent staining 
allow ready detection and quantification of intracellular lipid droplets and 
adipose tissue, including its regional body distribution [165,166]. These 
methodological advantages have been exploited for developing a bioassay 
to evaluate the obesogenic properties of chemicals in zebrafish larvae 
[160]. Zebrafish models can also help assess specific windows of sensitivity 
during life, transgenerational effects of obesogens [167–169], and can be 
used to study the interaction between the diet composition and metabolic 
health effects promoted by subsequent chemical exposures 
[114,152,154,159,170]. Interesting recent research demonstrated that 
long-term dietary vitamin D deficiency promoted stunted growth and 
increased central adiposity via both adipocyte hypertrophy and hyperplasia 
in both visceral and subcutaneous depots [171]. Through lipidomics 
analysis, these fish were demonstrated to have increased bioactive lipids 
that seemed to be mediated through disrupted endocannabinoid signaling 
[172]. 

Zebrafish have been widely applied to obesogenic chemical testing, 
with expanding utility across diverse metabolic disrupting effects 
[27,168,173-176]. Among other obesogenic chemical evaluations, 
developmental exposure of bisphenol S in combination with overfeeding 
promoted increased triacylglycerol and visceral adiposity via disrupted 
lipid metabolism [174], while BPA exposures both transiently and 
persistently disrupted food intake, increased body weights, and dis
rupted gene expression related to glucose and lipid metabolism [164]. 
Halogenated BPA analogs also promoted lipid accumulation in zebrafish 
larvae in a manner correlated with their activity as zebrafish PPARγ 
agonists [27]. Developmental exposures to nonylphenol and non
ylphenol polyethoxylates increased body weights and adiposity (in both 
visceral and subcutaneous adipose depots) and disrupted energy 
expenditure [79]. Tributyltin exposure has been described to increase 
body weights, hepatic triglycerides, and hepatosomatic index, along 
with disrupting genes related to adipogenesis, lipogenesis, and diverse 
other metabolism and growth-related pathways [177], as well as 

Fig. 2. Advantages and disadvantages of in vivo models for metabolic disrupting chemical evaluation. Common or emerging model organisms used in metabolic 
health research are discussed and various characteristics are described. 
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increasing adiposity [160]. Developmental cadmium exposures have 
also been demonstrated to increase lipid accumulation, though this ef
fect was transient (observed at one and two months post fertilization but 
no longer observed by 3.5 months [176]. Perfluorooctane sulfonate 
(PFOS) exposures have also been described to increase adiposity and 
disrupt pancreatic islet morphology and area in developmentally 
exposed zebrafish, along with increasing fatty acid concentrations and 
disrupting PPAR gene expression [168]. 

3.2. Oryzias latipes (Medaka) 

The Japanese rice fish, also known as the medaka, are a valuable 
model for environmental chemical and epigenetic transgenerational 
research [178]. Similar to zebrafish, this model can be used for esti
mating adipose tissue volumes and the effects of nutritional factors 
(dietary soy sauce oil) or various environmental chemicals such as per/ 
polyfluoroalkyl substances and tributyltin chloride [179-181]. Howev
er, they lack the thorough characterization of adipose depots and the 
semi-transparent bodies that zebrafish larvae benefit from. They have 
also been utilized for determining transgenerational effects on metabolic 
health outcomes such as lipid metabolism [182]. Research using medaka 
has also evaluated chemical exposures and effects on bone formation 
[183], suggesting a potential strength for this model in the evaluation of 
differential MSC lineage commitment. 

Medka have not yet been widely used in obesogenic chemical eval
uations, but some preliminary research suggests utility in this model for 
diverse obesogenic endpoints. Specifically, exposure of medaka to both 
tributyltin and perfluorooctane sulfonate (PFOS) individually promoted 
adipose accumulation in larvae, with mixtures of these two obesogens 
resulting in enhanced effects (even below the individual no-effect con
centrations) [180]. In related research, tributyltin exposures disrupted 
signaling pathways related to PPAR signaling, hormonal metabolism, 
and genes related to obesity in humans via mRNA-Seq analysis in 
exposed zebrafish [184]. Similarly, BPA exposure was reported to 
disrupt genes related to lipid metabolism (cholesterol and lipid syn
ethsis, regulation, and transport, etc.) in a sex-specific manner [185]. 

3.3. C. Elegans (Roundworm) 

The roundworm is a small nematode living in temperate soil envi
ronments that has been used as a model organism since the 1960’s in 
everything from developmental biology to neurodegenerative disease 
and aging. Although C. elegans is generally considered genetically and 
physiologically distant from humans, several studies have shown that 
the main regulatory pathways of energy homeostasis are shared between 
mammals and nematodes [144,186,187]. These advantages make 
C. elegans a suitable in vivo model to identify compounds that modulate 
fat storage and promote obesity [141,188]. Both simple fluorescence 
(Nile red or Sudan-black probes) and biochemical (triglyceride assays) 
techniques can be used to quantify lipid amount and fat storage in these 
worms [187]. In addition, genetic approaches using mutant or trans
genic animals can help evaluate molecular mechanisms underlying 
metabolic health effects [186,187]. Moreover, C. elegans can be readily 
used to measure food intake and energy expenditure [187,189]; several 
diets, food-derived or nutraceutical compounds, and fat-increasing 
compounds have been described to modulate fat accumulation [188- 
190]. Limitations of this model include lower conservation of biological 
pathways with humans and a lack of particular organs and circulatory 
systems [191]. C. elegans also lack PPARγ, though they do express 
orthologs of both PPARα and δ, and have no identifiable homolog for 
leptin [192,193]. Perhaps unsurprisingly, they thus have no cells spe
cifically designed for lipid storage (i.e. adipocytes), though they do still 
store lipids, primarily in intestinal and epidermal skin-like cells, which 
are comprised of diverse saturated, monounsaturated, and poly
unsaturated fatty acids [192]. This model has also been used to assess 
transgenerational effects, with research demonstrating that starvation of 
the parental generation disrupted metabolism in the F3 generation, 
whereas BPA exposures resulted in transgenerational modulation of 
epigenetic germline silencing through up to five subsequent (non- 
exposed) generations (reviewed in [194]). 

Despite these limitations, this model has been utilized widely in 
better understanding the genetics of fat accumulation, storage, and 
obesity [193,195], and has been applied to obesogenic chemical eval
uation successfully. Specifically, methylmercury exposure promoted 
triglyceride accumulation, lipid storage, and alter feeding behaviors 

Table 1 
Obesogenic chemical testing in emerging in vivo models (zebrafish, medaka, 
roundworm, fruit fly).  

Species Mode of action Representative References 

Danio rerio Obesity phenotype  

Increased weight, adiposity, 
and/or lipid accumulation 

Cadmium: [176,268]  

DDT mixture: [269] 
Nonylphenol and 
polyethoxylates: [79] 
Bisphenols: [270,27,164] 
Phthalates: [175,271,173]| 
PFOS: [168] 
TBT: [161,162] 
Rosiglitazone: [161,162] 

NAFLD phenotype 
Steatosis, fatty liver changes 

Cadmium: [268] 
Benzo(a)pyrene: [272,273]  

Bisphenols:  
[274,275,276,277,278] 
Phthalates: [279,280] 

Metabolism changes  

Metabolomics, lipids, fatty 
acids, diabetic phenotype, 
etc. 

Bisphenols: [281,276,164]  

Phthalates: [175,282,173] 
PFOS: [168] 

Oryzias latipes Obesity phenotype  

Increased weight, adiposity, 
and/or lipid accumulation 

TBT: [181]  

TBT/PFOS: [180] 

NAFLD phenotype 
Steatosis, fatty liver changes  
Metabolism changes  

Metabolomics, lipids, fatty 
acids, diabetic phenotype, 
etc. 

TBT: [181]  

Bisphenols: [185]  

Caenorhabditis 
elegans 

Obesity phenotype  

Increased weight, adiposity, 
and/or lipid accumulation 

Bisphenols: [198,283]  

Erythromycin: [197] 
PFOA: [284] 

NAFLD phenotype 
Steatosis, fatty liver  
Metabolism changes  

Metabolomics, lipids, fatty 
acids, diabetic phenotype, 
etc. 

Bisphenols: [198]  

Erythromycin: [197] 
Methylmercury: [196] 
PFOA: [284] 

Drosophila 
melanogaster 

Obesity phenotype  

Increased weight, adiposity, 
and/or lipid accumulation 

DEHP: [203] 

NAFLD phenotype 
Steatosis, fatty liver changes  
Metabolism changes  

Metabolomics, lipids, fatty 
acids, diabetic phenotype, 
etc. 

PFOA: [285]  

PFOS: [286] 

Summary table of obesogenic activity testing in the zebrafish, medaka, round
worm, and fruit fly models. Representative obesogenic chemical testing (non- 
exhaustive) is included to detail the diversity of contaminants examined across 
models for broad obesogenic endpoints. TBT = tributyltin chloride; DDT =
dichlorodiphenyltrichloroethane; PFOS = perfluorooctanesulfonic acid; PFOA =
perfluorooctanoic acid; DEHP = bis(2-ethylhexyl) phthalate. 
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[196], and erythromycin promoted increased fat content and tri
acylglycerol levels as well as overeating, presumably mediated through 
stimulation of serotonin, dopamine, and acetylcholine and/or disruption 
of lipogenesis and lipolysis [197]. Recent research demonstrated a non- 
monotonic increase in overall fat deposition and triglyceride content 
following bisphenol S exposures, along with modulation of fat synthesis 
and fatty acid oxidation gene expression [198]. 

3.4. Drosophila melanogaster (Fruit fly) 

The small size, short generation time, low cost, ease of breeding, and 
a large panel of genetic tools have spurred widespread use of the fruit fly 
model in genetic and developmental biology research [191,199]. Many 
studies have demonstrated the usefulness of this model in nutrition and 
obesity research based on the manipulation of diet composition and 
genes involved in nutrient sensing and regulation of energy balance 
[200]. Although this model is anatomically different from mammals, 
many organ systems perform similar functions relative to mammals. For 
example, the fruit fly fat body covers metabolic functions of liver and 
adipose tissue (e.g., fat and carbohydrate storage). Instead of a fully 
differentiated pancreas, there are neurosecretory insulin-producing cells 
(IPCs), which allow carbohydrate and lipid homeostasis via the pro
duction and secretion of an insulin-like peptide [146,200]. Few studies 
have utilized this model to evaluate potential obesogens and/or adipose 
biology, though its suitability for evaluating endocrine impact(s) on 
development and fertility is well accepted [201]. The efficiency of this 
model in assessing obesogenic properties of EDCs is highlighted by 
several studies demonstrating alterations of lipid homeostasis with 
chemical exposure (e.g., DEHP) and subsequent increase in lipid/adi
pose accumulation and/or transgenerational effects [202-204]. 

3.5. Rodents 

A critical issue in selecting an animal model is whether the outcomes 
examined are relevant to human anatomy, physiology, molecular 
mechanisms and show homology with humans, which has historically 
driven a reliance on rodent models (e.g., rats and mice). The use of ro
dents in metabolic health research is well-described and assessed by 
several previous reviews [205-207]. Here we will address other con
siderations for in vivo model organism research revealed through 
comprehensive evaluations in rodent models. Many of these factors have 
yet to be evaluated or considered for the emerging models described 
above but will need to be assessed as they are increasingly utilized. 

Dozens of publications have clearly delineated the use of the rodent 
model in metabolic health research. A number of studies (reviewed in 
[206,207]) have explicitly described the use of hypercaloric and/or high 
fat diets to promote metabolic disorders and the clear translation of this 
preclinical model to human metabolic syndrome. However, other ap
proaches, such as creating a crowded uterus in pregnant mice due to 
prior hemiovariectorm, have also been used to generate metabolically 
abnormal intrauterine growth restricted (IUGR) and macrosomic 
offspring in the same litter [208]. 

There are diverse genetic models of obesity, including db/db mice 
(leptin receptor mutation that promotes higher body weights, tri
glycerides, and cholesterol, hyperinsulinemia, and impaired glucose 
tolerance), ob/ob mice (leptin gene mutation resulting in inactive leptin 
protein that promotes obesity, hyperinsulinaemia and hyperglycaemia), 
fa/fa diabetic fatty rats (different leptin receptor mutation that promotes 
hyperinsulinaemia, hypertriglyceridaemia, and increased serum in
flammatory markers), and Otsuka Long-Evans Tokushima fatty rats 
(Pancreatic acini cells insensitive to cholecystokinin, which controls 
food intake, promoting obesity, hypertriglyceridaemia, impaired 
glucose tolerance), that have been described in detail previously [205]. 
Rodents can be robust models for body weight, adiposity, development 
of specific adipose depots, measurement of diverse lipid classes, glucose 
and insulin signaling, inflammatory markers, blood pressure, controlled 

measurement of food and water intake and metabolic activity, as well as 
NASH and NAFLD, among other metabolic outcomes [205]. 

3.6. Use of inbred vs. outbred models 

Genetic diversity of model organisms (inbred versus outbred) can be 
an essential design consideration for chemical contaminant studies. 
Researchers may select an inbred rodent strain without background 
genetic variation to study the epigenetic basis of phenotypic diversity (e. 
g., inheritance of an epigenetic trait) [209]. In contrast, a researcher 
may choose an outbred rodent (e.g., CD-1) for the genetically diverse 
background to assess toxicant-induced effects more rigorously. How
ever, there are concerns that laboratory outbred rodent strains differ 
substantially between vendors and relative to bona fide outbred ani
mals. Inbred rodents do not represent the spectrum of sensitivity 
required to model genetically diverse human populations accurately. 
For example, males at puberty have considerable heterogeneity in ro
dent responsiveness to estrogens [210]. The C57BL/6J inbred strain is 
exquisitely sensitive to estradiol after puberty relative to other mouse 
strains/stocks and exhibits hyper-estrogenization during fetal life, 
which becomes apparent in behavioral assays [211]. Interestingly, C57 
mice are insensitive to xenoestrogens administered via the dam 
compared to the outbred, hyper-fertile CD-1 mouse, which exhibits high 
sensitivity fetal-neonatal response to xenoestrogens [212]. Given this, 
the choice of strain used can have demonstrable impacts on endpoint 
measurements. 

3.7. Animal feed as a source of variability 

Animal feed can be a substantial source of variability in toxins, 
phytoestrogens, sources of fats, and other components. Open formula 
feeds provide the proportion of nutrients, which is intended to reduce, 
but not eliminate, batch-to-batch variability. Closed formula (constant 
nutrition) feeds just provide information about the amount of protein, 
fat and fiber, but the sources may vary due to price and availability 
[213,214]. Thus, the choice of feed used in animal studies, impacted by 
price, can be a critical source of variability in outcomes of health-related 
research and can also be the basis for studies that do not replicate prior 
results [215]. For example, publications by Thigpen and colleagues re
ported that a batch of constant nutrition rodent feed (Purina® 5002) 
containing elevated levels of phytoestrogens (focusing on the soy iso
flavones genistein and daidzein) interfered with the ability to see es
trogenic effects of a positive control chemical, the potent estrogenic drug 
diethylstilbestrol (DES). However, DES effects were observed with 
another batch of 5002 feed that had much lower phytoestrogen levels. 
The rat strain used also mattered, with Sprague-Dawley rats showing no 
effect of use of soy feed, while the CD-1 mouse (the model used by the 
National Toxicology Program), is, as discussed below, very sensitive to 
components of feed [216]. 

This observation by Thigpen demonstrated that there can be signif
icant batch-to-batch variability of phytoestrogen levels in laboratory 
animal feed with presumably the same nutrient profile; a constant level 
of soy protein in different batches of a feed can have markedly different 
levels of phytoestrogens, which vary in soy based on many environ
mental factors [215]. It has been assumed for some time that the only 
issue of concern with soy-based feeds was variability in the soy phy
toestrogens genistein and daidzein, but findings described below suggest 
other components of soy-based feeds (e.g., contaminated fish meal, 
source of lipid) may also lead to significant differences in phenotype in 
mice. Second, the study revealed that specific batches of feed could 
promote replication failure relative to most prior studies reporting that 
DES (a known human carcinogen) disrupted development in mice, just 
as it did in humans [217]. Developmental exposure to DES also pro
moted obesity during later adulthood in mice maintained on a soy-based 
(NIH31) open formula feed [218]. This demonstrates that a core issue 
should be whether the feed used is resulting in an inability to see effects 
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in response to treatments that others are reporting. Not surprising is that 
industry-funded research on BPA, which claimed to be a replication of 
findings from multiple laboratories [219], in fact, had used 5002 feed 
[220,221]. This led to a failure to demonstrate a BPA-induced effect in 
both CF-1 mice and Crl:CD Sprague-Dawley (CD-SD) rats. This research 
also failed to demonstrate effects of DES with this food (included as 
positive control) [220], suggesting an inappropriate model to detect 
BPA-induced effects [222]. 

In other studies, the expected developmental effects of DES were 
again shown not to occur in CD-1 mice fed 5002 feed, but were found if 
the mice were fed the constant nutrition, soy-based Purina® 5008/5001 
breeder and maintenance feeds, respectively. Specifically, relative to 
Purina® 5008 fed to pregnant CD-1 mice, the 5002 feed significantly 
estrogenized and elevated fetal serum estradiol in fetuses. Critically, the 
5008 feed had > 50% higher total estrogenic activity (detected in a 
human breast cancer cell bioassay) as well as higher amounts of genis
tein and daidzein relative to the 5002 feed, substantiating that 5002 feed 
interfered with finding DES effects, but this was not mediated by 
elevated genistein and daidzein or total estrogenic activity as initially 
proposed [223]. 

In addition to problems related to the use of soy-based 5002 feed, 
feeding casein-based low phytoestrogen 5K96 feed to pregnant CD-1 
mice also elevated endogenous serum estradiol in fetuses compared to 
CD-1 mice fed Purina® 5008; 5K96 casein feed thus also promoted 
estrogenization of mouse fetuses, similar to effects in mice exposed as 
fetuses to xenoestrogens such as DES or BPA [224]. Relevant to this 
review, the 5K96 feed resulted in morbid obesity in adult CD-1 male 
mice (all internal organs were encased in fat) compared to Purina 5008/ 
5001 or Harlan Teklad 8604, another soy-based constant nutrition feed 
[224,225]. 

Another example of feed-based impact on a supposed “non-replica
tion” experiment was when prior metabolic effects of BPA and DES were 
not found is a study in which the control CD-1 mice were morbidly obese 
and did not show the previously reported effects of fetal exposure to BPA 
or DES [12] while maintained on the casein-based AIN93G feed [226]. 
The fetal mice whose mothers were fed casein-based 5K96 or soy-based 
5002 feeds potentially had elevated aromatase (estrogen synthetase) 
activity, thus elevating fetal estradiol levels, compared to other soy- 
based feeds. Various flavonoids and lignans have been reported to 
inhibit aromatase activity in a human preadipocyte cell culture assay 
[227], although the components of the different feeds that caused these 
effects remain unknown. 

There have been many articles published about the issue of non- 
replication in laboratory research, mostly attempting to sensationalize 
the problem [228], though there are clearly issues, such as variability in 
feed, that are a major contributing factor in laboratory animal research 
non-replication. The above findings demonstrate the critical importance 
of, whenever possible, including a positive control in toxicological or 
pharmacological studies that will provide information about the sensi
tivity and validity of the assays and results [222]. The vast diversity of 
animal feed components, including the casein or soy backbone and 
multiple sources of protein and lipids, can markedly impact research 
findings related to metabolic health. 

3.8. The role of positive controls in animal model selection 

A National Toxicology Program (NTP) panel addressed animal 
models for EDCs or drug research. It stated: “Because of clear species and 
strain differences in sensitivity, animal model selection should be based 
on responsiveness to active endocrine agents of concern (i.e., responsive 
to positive controls), not on convenience and familiarity.” The rat strain 
(Crl:CD(SD)) is used by many investigators to examine gestational 
exposure to estrogenic chemicals and drugs, although this rat strain 
required over a 15-fold higher dose of ethinylestradiol to show a 
response relative to women [229]. It is well known that selecting for 
very high fecundity (CD-SD rats average 14–15 pups per litter), results in 

low sensitivity to estrogenic drugs and chemicals [230]. 
It is also possible that the characteristics selected for in the genera

tion of the CD-SD rat strain, with large litter size and accelerated post
natal growth, may make them resistant to contaminant exposures, 
reducing their future sensitivity and usefulness as a model; this strain is 
generally used in all FDA and in many commercial laboratory toxicology 
studies. Some strains have undergone selection for large litter sizes for 
over 100 generations in commercial laboratories, with the largest 
5–10% of litters selected every generation for > 100 generations, 
regardless of whether they were exposed to pesticides (in feed or used in 
the colony), xenoestrogens in their cage materials, or diseases in the 
colony, etc. The result is laboratory animal strains that are precocious, 
excellent breeders and produce large litters. However, the laboratory 
animal suppliers selected large litter animals that are less sensitive to 
environmental chemicals [210,230]. Thus, before proceeding with ex
periments using environmental chemicals such as potential obesogens, it 
is critical to examine the sensitivity of the animal model to appropriate 
positive controls (e.g., DES for estrogenic testing) for the endpoint 
examined to ensure that each experimental design is sensitive to the 
environmental chemical being examined. 

3.9. Animal housing 

The caging used in an experiment is an additional key factor. This 
was clearly described in studies of BPA, the monomer used to make 
polycarbonate cages and bottles. Due to harsh washing of the cages, BPA 
was found to leach from the polycarbonate cages; this was further shown 
to expose both control and intervention animals to this xenoestrogen, 
negatively influencing the experimental determinations of successful 
meiosis in mouse oocytes [231-233]. It is also worth noting that the vast 
majority of aquatic housing systems use polycarbonate; there is likely to 
be leaching of BPA from these and potential recirculation of the chem
ical throughout the system. While some alternatives do exist [e.g., pol
ysulfone (PS) or glass], they are often cost-prohibitive. Polycarbonate 
(PC) consists of BPA molecules linked by ester bonds that are subject to 
hydrolysis under elevated temperature or either high or low pH. PS is a 
co-polymer of BPA and bisphenol S (BPS) that is linked by ether bonds 
and is stable under temperature and pH conditions that hydrolyze BPA 
bonds in polycarbonate, though PS cages are more expensive. It is 
essential to ascertain the potential impacts of the housing materials (for 
rodents, also water bottles) on testing estrogenic or other metabolism 
disrupting chemicals. 

3.10. Assays for detecting thermogenic brown fat activity 

Beige and brown thermogenic fat produces heat during non- 
shivering thermogenesis to regulate body temperature by burning cal
ories (i.e., glucose and lipids) [234]. These tissues help regulate glucose 
and lipid levels, making them high-priority targets for future thera
peutics in the treatment and prevention of obesity and other metaboli
cally related diseases [235]. The functionality of beige and brown fat 
and the discovery that these tissues exist in adults have made the 
development of reliable assays a critical step to better quantify and 
harness their therapeutic potential as well as to identify chemicals that 
promote or inhibit function. 

The energy expenditure in beige and brown adipose tissue (BAT) is 
made possible through the activity of uncoupling protein 1 (UCP1) in 
brown and beige fat, which uncouples mitochondrial respiration from 
ATP production, leading to the generation of heat [235]. Reporter sys
tems that focus on UCP1 levels have been developed to measure the 
activity of thermogenic fat and have been used as a screening tool to 
identify novel small molecules that can induce thermogenesis within 
these tissues. Specifically, the ThermoMouse model measures thermo
genesis via luciferase activity linked to levels of UCP1 expression in BAT 
following environmental stimuli (e.g., decreased temperatures) [236], 
which has also been adapted as an in vitro assay to screen small 
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molecules for luciferase activity [236]. This assay has supported 
screening of potential drug targets that promote UCP1, and which could 
provide a foundation for future BAT-mediated drug therapies that could 
induce thermogenesis and energy expenditure [237-241]. 

The OLTAM (ODD-Luc based Thermogenic Activity Measurement) 
system was developed to assay the activity of UCP1 independent ther
mogenesis in beige and BAT. In this in vivo model, a transgenic mouse 
that expressed the ODD (oxygen-dependent degradation) domain of 
hypoxia-inducible factor 1 alpha (HIF1α), tagged with luciferase, was 
used to measure hypoxia. Hypoxia has been shown to take place during 
nonshivering thermogenesis in beige and brown fat and is an indicator of 
thermogenesis [242]. An in vitro system was developed using the stromal 
vascular fraction of isolated brown adipocytes from these mice to 
measure cell-based thermogenic activity [242]. These cells could be 
used to evaluate the action of chemicals on the function of thermogenic 
beige and brown adipocytes. 

Measuring changes in heat generated within BAT offers another tool 
to assay thermogenic activity. Noninvasive imaging techniques lack 
sensitivity and specificity due to the distance between the instrument 
and the tissue, and invasive techniques lack sensitivity due to their 
inability to directly and safely insert into BAT and their inability to 
detect more minute temperature fluctuations [243]. Xenon-enhanced 
computed tomography enabled accurate measurement of BAT within 
mice due to the lipophilic preference of xenon gas [244], which has been 
further enhanced through later research [243]. ERthermAC, a small 
molecule fluorescent dye that responds to changes in intracellular heat, 
is another tool that has been found to assay chemically stimulated 
thermogenesis in both rodent and human brown adipocytes [245], and 
has provided evidence comparable to existing indirect methods of 
measurement. 

Lastly, UCP1-expressing brown adipose cells isolated from supra
clavicular depots in humans have revealed that the molecular makeup of 
these cells more closely resembled mouse beige adipocytes than brown 
adipocytes [246]. In addition, humans who initially possessed no BAT, 
were found to create new BAT within the supraclavicular region. This 
suggests that human BAT is derived from the browning of beige fat. One 
could develop assays based on these cells to identify chemicals that 
promote or inhibit the production of these thermogenic adipocytes. 

4. In silico tests 

Computational strategies offer promising tools for developing 
animal-free models for human risk assessment of obesogens. Traditional 
computational methods using structural information of chemicals 
(quantitative structure–activity relationship (QSAR), Read Across) have 
already been outlined as a general strategy for non-animal testing ap
proaches, for example, by the US National Research Council (Tox21, 
Toxicity Testing in the 21st Century) [247] and the Organization for 
Economic Cooperation and Development (OECD) guidelines. New 
approach methodologies (NAMs), including silico methods, are 
increasingly important in toxicant risk assessment [248]. 

With the recent advance in omics and high throughput screening, the 
amount of information on gene/protein activity in response to obeso
genic chemicals has expanded substantially, thereby enabling the 
development of innovative approaches such as integrative systems 
biology/toxicology models. Systems toxicology uses advanced bioin
formatics and statistical tools to integrate heterogeneous data types 
(functional genomic profile of obesogens, protein–protein interactions, 
protein-tissue associations, disease annotations, etc.) to mimic the 
complexity of the biological organization, to identify uncharacterized 
putative associations between an obesogen and its biological targets, 
and therefore to prioritize further experimental testing, thereby associ
ating these chemicals with the disease [249,250]. 

Adverse Outcome Pathways (AOPs) are structured frameworks rep
resenting relationships between molecular initiating events, key events, 
and adverse outcomes. The OECD proposed AOPs to enable robust 

mechanistic evidence for chemical safety and risk assessment [251]. 
However, for chemical risk assesssments, a pragmatic approach has been 
proposed for applying AOP criteria in evaluating the safety of a chemical 
[252], since a comprehensive understanding of the initiating events and 
molecular pathways linking chemicals to adverse outcomes is unrealis
tic; for a chemical such as BPA with over 10,000 publications and clearly 
understood to result in adverse effects [253], understanding all of the 
AOPs is still a work in progress. AOPs describe and connect data from 
various sources, i.e., databases and the scientific literature. Key infor
mation used to build AOPs can also be gathered using computational 
approaches based on artificial intelligence, such as frequent itemset 
mining and text mining [254]. AOP-helpFinder is a recent hybrid tool 
that combines text mining and graph theory, helping identify the 
existing linkages between variables (e.g., an obesogen and a biological 
event) by automatically screening the available scientific abstracts 
[255]. Using this tool, it was possible to link exposure to bisphenol S 
with obesity [256]. Integrative systems toxicology modeling and text 
mining can also link obesogens to AOPs, as proposed recently for 
bisphenol F [257]. 

5. The future of screening for obesogens 

A single approach or assay will not yield all the information needed to 
identify and classify obesogens. Data from epidemiological studies should 
be integrated with experimental data from animal models to support the 
evidence for the obesogenic potential of an identified chemical. It is 
advisable to adopt a tiered approach to identify and characterize EDCs, 
which can ultimately inform their classification as obesogens, which has 
been proposed previously [258]. For example, if robust biomarkers such as 
epigenetic modifications (e.g., DNA methylation), growth factors, or me
tabolites are identified through in vivo experimental studies, they can be 
matched with findings from human studies. In vitro methods that assess 
these changes will support prioritized screening for putative obesogens, 
which can then be classified accordingly. Structured frameworks, such as 
the integrated approaches to testing and assessment (IATAs), allow cate
gorization of different tests that support the linkage of a chemical with an 
adverse outcome and with the different events leading to that outcome. 
IATAs are expected to be used for large scale obesogen testing and appear 
to be more time- and cost-effective than current approaches [259]. Addi
tional in vitro tests are needed, including assays that will develop and 
characterize brown and beige adipocytes to be used to define further the 
sites and actions of potential and actual obesogens. 

Approaches like this have been previously attempted using the 
ToxCast dataset. The National Institute for Environmental Health Sci
ences (NIEHS) hosted a workshop in 2011 to develop models for pre
dicting obesogenic and/or diabetogenic outcomes using ToxCast and 
Tox21 data [260]. Expert panels developed (among others) a model to 
predict chemicals likely to promote adipocyte differentiation. An early 
application of this model reported poor performance in predicting both 
active and inactive adipogenic chemicals and suggested that better 
validation of primary high throughput screening assays was required 
before using ToxCast data for this purpose [62]. Later analysis updated 
the predictive model and reported more promising effects [81]. 
Computational modeling cannot substitute for experimental (in vitro and 
in vivo studies) but can help prioritize obesogens, assess human health 
risks and trigger new epidemiological and experimental studies. To be 
useful for screening purposes, computational models need to be groun
ded in real-world data and continually refined such that predicted ac
tivities match the results of in vitro and in vivo screening assays. 

Indeed, there is consensus regarding the need for standardized 
testing methods to identify new chemicals that trigger metabolic 
dysfunction. In this context, initiatives like the French PEPPER (Public- 
privatE Platform for the Pre-validation of Endocrine disRuptors char
acterization methods, https://ed-pepper.eu) platform may facilitate 
development of pre-validated methods and assays in toxicology for 
identification of novel EDCs [261]. In Europe, a collaborative group of 
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eight projects, named EURION [262], was established in 2019. EURION 
aimed to develop integrative tests to identify new EDCs. Among EUR
ION’s projects, three projects focus on obesity and metabolic disorders 
(OBERON [263], GOLIATH [264], and EDCMET [265]), which are ex
pected to deliver standardized batteries of tests for the identification of 
novel obesogens. 

As the field of obesity and adiposity research develops, more 
research will likely utilize some of the alternative models described 
above. While historically less utilized than rodents, these models have 
some advantages that are likely to see increased use in the coming years. 
Among these are the relatively lower cost and rapid development of 
assays and models that may allow for superior chemical mixture as
sessments than is possible using rodent models. In vitro models have also 
continued to expand, with an anticipated shift to greater use of normal 
human cell models, three-dimensional culture techniques, and co- 
cultures techniques that may recreate the physiology present in the 
tissue microenvironment more accurately. Recent advances in high 
content analysis provide promising grounds for increased throughput of 
adipogenesis models, which would enable the screening of larger 
number of chemicals and their mixtures with increased sensitivity and 
the possibility to differentiate the changes in adipocyte number as well 
as size [42,75]. Predictive models are still early in development but have 
shown some promise in predicting likely active adipogenic and/or 
obesogenic chemicals. Predictive models based on key concepts for 
obesogens (such as those recently described for EDCs and hepatotox
icants [266,267]) are likely to support determinations of obesogens and 
their causal mechanisms of action. They should be prioritized on an 
international level, such as the OECD. 
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